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ABSTRACT 

We show that any constructible, constructibly countable, (dual) algebraic 
lattice is isomorphic to the degrees of constructibility of reals in some generic 
extension of L. 

Introduction 

The motivating question for this paper, in its boldest form, is: What are the 

initial segments of  the degrees of  constructibility? 

That question, as posed, is in a sense necessarily unanswerable: The degrees 

of  constructibility are notoriously non-absolute. To circumvent this, it is 

reasonable to make some assumptions that guarantee a rich degree structure 

and to invoke some cardinality restrictions. (By analogy, assuming ZFC, any 

countable upper semi-lattice with least element is isomorphic to an initial 

segment of  the Turing degrees; see [10], [11], [13], and [12] for historical 

highlights, and [2] for an extension to upper semi-lattices of  size R~.) One 

might ask: Assume the set-theoretic universe is rich (e.g. col is inaccessible 

from reals). What structural properties suffice to characterize the countable 

initial segments of  the degrees of  constructibility of  reals? 

Unfortunately, the answer to this question (under any appropriate interpre- 
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tation of "structural") is that there is no such characterization. (For example, 
some but not all countable well-founded distributive lattices, and countable 

complete linear orderings, are isomorphic to the degrees below some real; see 
[1].) The complication is that _-<¢ ("constructible in") is a constructible 
relation; any set x constructs the ordering on the degrees below x. Thus, any 
structural property which allows an upper semi-lattice U to code an arbitrary 
real leaves open the possibility that Ucodes a real r such that the degrees below 
r are too complicated to be embedded in U. Such a U cannot be an initial 

segment of the degrees. 
Restricting the question to constructible upper semi-lattices makes it some- 

what more tractable. In particular, there is no coding problem; any real coded 
into a constructible upper semi-lattice is constructible. Thus, we ask: Given 
appropriate richness assumptions on the universe, characterize the countable 
upper semi-lattices in L which are isomorphic to initial segments of the degrees 

of constructibility of reals. 
For some constructible upper semi-lattices U, it is possible to construct a 

forcing partial order in L, which adds a generic real g such that the degrees 
below g are isomorphic to U. Iterated Sacks forcing ([ 16], [6]) suffices in case U 
is a countable successor ordinal. A generalized notion of iteration does the job 
for countable complete linear orderings in L [9]; the canonical example is a 
"backwards" copy of a successor ordinal. Adapting the techniques of the 
Turing degree results, Adamowicz ([3], .[4]) produces such forcing partial 
orders for any well-founded countable upper semi-lattice in L. (In all these 
cases, "countable" is a somewhat stronger restriction than necessary.) 

In the negative direction, there is a good reason for the failure of techniques 
from the Turing degrees to produce a similarly strong result about degrees of 
constructibility: Lubarsky [15] has shown that if the degrees ofconstructibility 
form a countable lattice, then it must be complete. 

In this paper, we extend the positive results to include countable complete 
lattices which are not necessarily well-founded or linear, but which are 
algebraic. (This is essentially the property which we need to combine the ideas 

of [ 13] with those of [9]. It includes all well-founded countable lattices and all 
complete countable linear orderings.) This still leaves open the question of 

countable, constructible, complete but non-algebraic lattices. We do however 
show that there is a class of complete but non-algebraic lattices which cannot 
be realized as an initial segment of the degrees of constructibility by the forcing 
methods used here and for the Turing degrees. 

We will consider a countable algebraic lattice .W in L, and construct in L a 
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forcing partial order P such that if (~ is P-genetic over M, the degrees of 
constructibility of reals in L [(~] are isomorphic to the lattice .~o. As usual in 
such arguments, we will be forcing with trees ordered by inclusion, and the 
generic filter (q will be equivalent to the unique common branch g through the 

trees in (g. 
The properties of ~ will be used to construct an appropriate representation 

O of.~ °. The basic idea is that for each element i o f ~ ,  we have an equivalence 
relation =-~ (congruent modulo i) on O. These relations form a lattice of 
equivalence relations isomorphic to .~. (There is a natural lattice structure on 
equivalence relations on a specified set, given by ~ i  >-- -----j iff ~-i refines ~ . )  
Our forcing conditions will be trees of finite sequences from O, and the generic 
object g will be a function from co ~o O. From g we will define a family of reals 
{hi I i ~ .~} such that the degrees of constructibility of the hi form (in the 
canonical way) a copy of ~ .  (The real hi is defined from g, by retaining 
information about the values g(n) only up to its ~ equivalence class.) Finally, 
we will show that every real in M[g] is of the same degree as one of the hi. 

Since the relations -----i form a copy of ~ as a lattice of equivalence relations, 
if i _-< j in .2' (and only in that case), ~ j  is a refinement of ----i. This makes it 
clear that hj constructs hi. It is also not hard to guarantee, by giving the forcing 
conditions appropriate splitting, that if ~ j  is not a refinement of -~,  then hj 
does not construct hi. The difficulty is in guaranteeing that every real is of the 
same degree as some hi. 

In Section l, we define algebraic lattices and (sequential) algebraic lattice 
representations, and prove that a lattice is algebraic iff it has an algebraic 
representation. 

In Section 2, we define, from a sequential algebraic representation of a 
countable lattice _~, the associated forcing partial order P, and prove that P 
genetically adds reals h,, i E ~ ,  whose degrees form an isomorphic copy of.~. 

In Section 3, we complete the proof by showing that in the forcing extension 
of M by P, every real has the same degree as some hi. 

1. Algebraic lattice representations 

Much of the history of initial segment results for the Turing degrees, as well 
as most other reducibilities, has been intimately connected with the problem 
of finding the right sort of representation for the lattice that one wants to 
embed. (See Lerman [14] for an overview of the process.) An analysis of the 
known Turing degree constructions and that of [9] lead us to a list of desirable 
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properties for a representation. Bill Lampe identified a subset of these proper- 
ties ((1.0)-(1.6) below with or without (1.4)) as characterizing the algebraic 
lattices (a result of Gr~tzer and Schmidt [8], Corollary II. l) and supplied us 
with many equivalent definitions for this class of  lattlces. We then showed that 

it is possible to get all the properties we wanted in a representation of any 
algebraic lattice. The relevant definitions and proofs for the entire result are 
presented in a basically self-contained way in this section. One warning 
however should be given to the reader who may already be familiar with 
algebraic lattices: Our notions are dual to the common ones. This is standard 
in all uses of representations by equivalence relations for initial segment 
results in degree theory because of the way in which the degrees form an upper 

semi-lattice but not a lattice. 

DEFINITION 1.1. Let &¢ be a lattice with universe some cardinal x and 
relations -_, v, and A. We will use the letters i , j ,  k, s and t to denote elements 
of  &~' and F,  I, S, and T to denote subsets of Z¢. 

An element i o f ~  is compact if, for every I c ,~ with A/_-_ i, there is a finite 
F c I such that AF_-_ i. 

An algebraic lattice is a complete lattice which is compactly generated, that 
is, every i E ~ is the infimum of the compact elements above it. 

A set 0 of functions from ~e into x (whose elements we denote by the letters 
a, #, y or (~) is an usl representation o f ~  if the following conditions are always 

met: (We define Ot~ifl iff a(i) = fl(i).) 
(l .0) Zero: a-~ofl. 
( l . l )  Ordering: i ~ j  & a~ j f l=*a~i f l .  
(1.2) Non-ordering: i ~ j ~  3a, f l ~ O  (a~j f l  & a~i f l )  
(1.3) Join: (i v j  = k) & a~--ifl & a~j f l=*a-~ kfl. 

O is a positive usl representation if it satisfies (l.1) and (1.3) but not 
necessarily (1.2). 

We say that the representation is complete if 

(1.4) Completeness: i = V l  & Vj  ~I(a=--jfl)=o a==-ifl. 
Note that completeness (1.4) implies the join property (1.3). 
We say that the representation is compact if 

(l.  5) Compactness: i = AI & a ~ i  fl =* 3 finite F C I and an i = AF such that 

We say that an usl representation is a lattice representation if 
(1.6) Full meet: For every a, fl E O and every i, j and k in .~ with i a j  -~ k and 

a-~kfl there are 71, 72 and 73 in O such that Ol----~)'l~j72=--i~'3--~jfl. 
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We say that a representation O is homogeneous if 

(1.7) Full homogeneity: For every finite O' c O and every a0, a~, f t ,  f13~O 

such that Vi~(ao~ia~--'flo=--ifl3) there are fl~ and f12 in O and 

• f0, fl, f2 : O'--- O such thatfm(ao) = tim, f,,(al) = fl,, +1 and 

Va, f lEO'Vi~(a~ f l~ f , , , (a )~- - , f , , , ( f l ) ) ,  f o r m  = 0 ,  1,2. 

For the sake of brevity we call a complete compact homogeneous lattice 
representation simply an algebraic representation (we call it positive if it need 
not satisfy (1.2)). For our construction we will consider only countable 
algebraic lattices for which we will need a sequential approximation to such a 

representation: 

Let ~ n  be an increasing sequence of  finite subusls of a countable lattice 

with union .~. A nested sequence On of finite positive complete compact usl 
representations for ~ which are also full usl representations for the ~ n  is a 
sequential algebraic lattice representation of ~ if 
(1.6') Meet: For every ~, fl ~On and every i, j and k in ~ n  with i ^ j  -- k and 

Ot~k~ there are 7~, 72 and 73 in On+l such that Ol~i71~j72~i73~j~. 
and 
(1.7') Homogeneity: For every a0, ax, fl0, flag On such that V i ~ 

(a0 = i  a i --" fl0~ifl3) there are fll and f12 in On + 1 and f~ fl, f2 : O, --" On + 1 
such that for m - - 0 ,  1,2 fm(~0)--fl,,, fm(oq)=flm+l and Va, f l~On 
V i E.~°(a ~ , f l  --* fro(a) ~ ,  f.(fl)). 

It should be clear that if a countable lattice .~ has an algebraic represen- 
tation it has a sequential one. (The only change for uncountable ones would be 
that we should allow the ---¢"n and On to have any cardinality less than that of.~e, 
i .e.x.)  We thus wish to prove the following: 

THEOREM 1.2. Every algebraic lattice ~ has an algebraic representation. 

The construction of the desired representation and the verification that it 
has all the desired properties is rather long and frequently tedious. Many of the 
details overlap with results in the literature. Because the homogeneity require- 

ment  (1.7) is not considered in the lattice theoretic literature there does not 
seem to be a ready reference that would short circuit most of the work. We 
have opted to give all definitions in full and to state all the lemmas. Any 
verifications that are included in Lerman [ 13] or [ 14] have been omitted. They 
are in all cases straightforward (as are nearly all the new ones). 
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LEMMA 1.3. (a) l f  i, jE.f t  ~ and i~ j ,  then there is a compact s ~ . ~  with 
j ~_ s and i~s. 

(b) I f i  andj are compact then so is i ^ j .  Thus the infimum of anyfinite set of 
compact elements is compact. 

PROOF. (a) As j is the infimum of  all the compact  elements above it, there 
must  be such an s ifi;~j. 

(b) This is immediate from the definition of  compact. 

We begin by building a complete compact usl representation Oo for .~'. For 

each compact s in ~ we put in two elements as and fl, defined as follows: 

~0  i f / =  0, 
O/s(i) [ (0, 3s + 1) i f / ÷  0, 

and 

t 
0 

fls(i) = (0, 3s + l ) 

[<o, 3s> 

i f / =  0, 

if i ÷ 0 ,  and i~ s ,  

if i ÷ 0  and i~s. 

LEMMA 1.4. O0 is a complete compact usl representation for .~. 

PROOF. (1.0) follows immediately from the definition of  O0. Note next that 
if a, fl ~ Oo, i ÷ 0 and ,----~ fl then, for some compact s in .~, they are as and fls 
(in some order) and i ~s .  (1.1) and (1.3) are thus deafly satisfied. For (1.2) 
consider i ;~ j .  By Lemma 1.3 there is a compact s with j _~ s and i ~[s. as and fls 
then fulfill the requirements of (1.3). 

For the completeness of the representation consider a situation as in (1.4). 
We again know that a and fl are asand psand tha t j  -~ s for every j ~ I. Thus i ~ s 
and so by definition as ~-~ fls as required in (1.4). Finally, to verify compactness 
we consider a situation as in 0.5).  Again we have to deal with as and fls with 
i -~ s. As s is compact, there is a finite subset F of  I such that _/= AF_~ s. It is 
then clear from the definition of  as and fls that they are congruent modulo i as 
required in (1.5). 

We now wish to prove two lemmas that will allow us to inductively build up 
extensions of the representation Oo to satisfy the requirements embodied in 
(1.6) and (1.7). 

L~MMA 1.5. I f  O is a complete compact usl representation of.?', i , j ,  k E 
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~-q~, i ^ j = k ,  a, f l E O  and Ol~k~ , then there is a O ' D O  which is also a 
complete compact usl representation of  ~ and contains elements 7t, ~2 and 73 
such that a~-t )'l =--j ~2~i ~3~j~ as required in (1.6). 

PROOF. The crucial observation is that it suffices to consider the situation 
in which i, j and k are all compact. Suppose we have a O* D O that has the 
desired elements whenever i, j and k are compact. Consider then an arbitrary 
i ^ j  = k in £¢. Let St and Sj be the sets of compact elements above i and j 
respectively so that ASt = i, ASj = j  and A(Si U Sj) = k. As O is compact there 
is a k ~  and finite Ft C St and Fj C Sj such that k =A(Ft U Fj) and a=--k_fl. 
Now by Lemma 3, k, as well as /=AF~ and j_ =AFj,  are all compact. 
As / ^ j  = k, we have by assumption 7~, )'2 and 73 in O* as required in (1.6) 
for/ ,  j_" and k. As i ~ / and j _-_j_', it is clear using ( 1.1 ) that the same 7's work for 
our original i , j  and k as desired. 

We now assume that i, j and k are compact and that a-----k ft. If i ~ j  we can 
take all the y's to be a. We thus assume that i ~ j .  We choose new numbers w, 
x, y and z not appearing as values of any element of O and define the required 
y's as follows: 

w(t) i f t ~ i ,  

~,~(t) = if t~i ,  

! ( t )  i f t  ~ j ,  

72(t) -- i f t  ~ i & t ~ j ,  

otherwise, 

f! 
(t) i f t  -~j, 

73(0 ---- i f t  ~_ i & t~  j ,  

otherwise. 

We let O ' =  O u {Tt, Y2, 73}. As i ~ j ,  it is clear that the 7's satisfy the 
congruences required in (1.6). We thus need only verify that (1.1)-(1.5) hold 
for O'. 

NOTE 1.6. Before considering each clause note the following: 
(i) If y~ ----, 6 for J ~ O then t ~ i and J ----t or. 
(ii) If  h ~ J for J E O, then t ~ j ,  i (and so t _~ k) and J ~ a. 
(iii) If 2)3 ~ t  J for J E O, then t ~ j  and J ----t ft. 
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(iv) I f  71 ~ t  72, then t ~ i ^ j  = k and 71 ----~t a. 

(v) I f  71 ~ ,  73, then t _-__ i ^ j  = k and 7~ --=t a.~,fl .  
(vi) I f  72-~, 73, then either t ~ i, j and 71 ~ t  72 ~ t  a-----t fl or t ~ i but  t~j.  

The verification for (1.0)-(1.3) is straightforward and standard. 

Consider  next a situation as in (1.4) with VT = t and Ym ----t g for every t ~ T, 

m = l, 2 or 3 and t~ E O'. We consider  each possible case: 

(a) ~ E O  

m = 1. By Note  1.6(i), t _-_ i and g ~-t a for each t E T. Thus t ==_ i and, as O 

satisfies (1.4), g ~ t  a. By the definition of  71 we thus have 71-----, g as required. 

m -- 2. As for m -- 1 using (ii) in place o f  (i). 

m = 3. As for m = 1 with a replaced by fl and (i) by (iii). 

(b) g -- Tp for p - -1 ,  2 or 3, p ~ m  

m = l, p = 2. By 1.6(iv) t ~ k for every t E T a n d  so t ~ k. Thus  by definition 

71 ~ t  a ~ t  72" 

m = 1, p = 3. Again by 1.6(v) t ~ k  and a=--tfl for every t ~ T .  Thus t_~k 

and, as O satisfies (1.1), a =t f l  and so by  definition 71 ~-t 73. 
m = 2, p = 3. By 1.6(vi) t ~ i for each t E T and in addi t ion we have two 

subcases to consider: 

(i) V t E T(t ~ j )  and so t ~ k 

and 
(ii) 3 t ~ T ( t ~ j )  and so t ~ j .  

(i) As O satisfies (1.1), a----.tfl. Thus by definition 72------_t 73 as required. 

(ii) By our assumptions t ~ i and so by definition 72 ~ t  73. 
The verification o f  (1.5) is quite similar. Suppose A T  = t and 7m------.t t~. We 

consider  for m = 1, 2 or  3 and J ~ O'  each possible case: 

(a) ~ O  
rn = 1. By 1.6(i), t ~ i  and ~ _ ~ a .  As O satisfies (1.5), g-------,a for some 

t '  = A F  (_-__t) for some finite F C T. By the definition of  71 and (1.1) we thus 

have 7~ ~ t~ as required. 

m = 2. Exactly as for m = 1 with i replaced by k and 1.6(i) by 1.6(ii). 

m -- 3. As for m = 1 with a replaced by fl, i by j and 1.6(i) by 1.6(iii). 

(b) ~ = 7pfOrp = 1,2 or 3, p # m 

m = 1, p = 2. By 1.6(iv), t ~ k and 71 ~ t  a ~ t  72. By the compactness  o f k  we 

have a t '  and a finite F c_ T w i t h  t '  = A F ~ _ k .  The definition o f? l  and 72 then 

tells us that 71 ----t, 72 as required. 
m = 1, p = 3. By 1.6(v), t -~ k and a ~ #.  As O satisfies (1.5), a ~ t ,  fl for a t '  

as above  and so by  definition 71 =t ,  73. 
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m = 2,  p = 3. By 1.6(vi) _t S i and we have two subcases to consider: 
(i) _tSjand a=,P 

and 
(ii) _t$ j. 
(i) As 8 satisfies (1.5), we have a t' as above with a zl, B. By the compact- 

ness of k and (1.1) we may also assume that t' S k. Thus by definition y2 =! y3 as 
required. 

(ii) By the compactness of i we have a t' as above with t'S i while t$ j 
guarantees that t'$ j. Thus by definition again, 7, y3 as required. 

LEMMA 1.7. Zf8 is a complete compact us1 representation for Y and the 
notation is as in (1.7), then there is a complete compact us1 representation 
8" > 8 for Y containing elements B, and 8, such that there are maps 
fm : 8'- 8" as required in (1.7). 

We first need another fact about compactness. 

LEMMA 1.8. If t3 is a complete compact us1 representation for Y and 
j = V { i :  then j is compact. 

PROOF. By completeness a=,B. Let S, be the set of compact elements 
above j so that j = A$. By compactness there is a finite F C $ and a j - = A F  
such that a-,p. By definition of j ,  we see then that j = j - which is compact by 
Lemma 1.3 as required. 

PROOF OF LEMMA 1.7. Let j = V{i  : ao=i a,}. By Lemma 8,  j is compact. 
Let 8' = {a, cu,, a2, . . . , ap}. Let u and v be new numbers not appearing as 
values (or coordinates of values) of elements of 8. We define new elements 8, 
for n = 1,2 and y , ,  for m = 0, 1,2 and q = 2, . . . , p as follows: 

if a, =, a@ 

if aq =( a,, 

otherwise. 

We first note that /3, =, /3, + , for m = 0, 1,2 as 8, =, p2 =,Po by definition 
and by the hypotheses of (1.7). Thus a,,=, a, implies that B, =,B, + , 
and so the y , ,  are well defined. 
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We now set O" = O U {fl,, fiE} U {~'m,q : m = 0, 1, 2 and q = 2 . . . .  , p}. That 

O" satisfies (1.0)-(1.3) and (1.7) is verified in Lerman [13, Lemma 2.4] albeit 

with a rather different notation scheme. We now verify that 0 "  satisfies (1.4) 

and (1.5). The argument for adding on l/t and l/2 is the same as for ~,, in I_emma 

5. We therefore replace O by O U (l/l,//2} and consider the cases for verifying 

first (1.4) and then (1.5) for 7m.q ='t tJ as in Lemma 5. 

NOTE 1.9. (a) If~'m.q =--t tJ and c~ CO, then either 

(i) ?m,q ~ t  l/m and Otq ~ t  O~0 or 

(ii) 7m,q =--t l/m + I and O~q ~ t  O~ 1" 

(b) If  7m,q = t  ~'n,r then either 

(i) aq---~tar~taoand l/m~tfln 
(ii) a q ~ t a , ~ t a l  and flm+l~'tl/n+l 
(iii) Olq~taO, a r ~ t a  I and l/m~t~n+l o r  the roles of  m, q and n, r are 

interchanged here or 

(iv) aq ~ t  at, neither are congruent to a0 or a ~ and m = n. 

We now consider a situation as in (1.4) with t = VT and 7m,q ~ ~ for every 

t E T .  
(a) 6 CO: We may assume as before that T is closed under finite joins. By 

Note 1.9(a) we must be in case (i) or (ii) for each t ~ T. By the ordering 

property (1.1) of  the representation, if t'---t are in T and one case holds for t 

then it holds for t '  as well. Thus one case or the other must hold for cofinally 

many and so all t E T. As the analyses are the same in each case assume (i) 

holds for all t E T. As O satisfies completeness (1.4), we know that ctq ~ t  ao and 

tim ~ t~ and so by definition 7#,m ~ l/m ~ t~ as required. 

(b) c~ = Yn,r: AS in case (a) we may assume that one of  the cases of  Note 1.9(b) 

holds for cofinally many t ~ T: If  thei'e is a t ~ Tsuch that 1.9(b)(iv) fails for all 

t ' ~  t then one of  (i)-(iii) holds for each such t'. As in case (a) these properties 

are inherited downward in T and as T is closed under finite join one of  them 

must hold for all t E T. We divide the analysis up according to which one holds 

for cofinally many t E T. 

(i) Again as O satisfies (1.4) aq ------t a r  ~_t a0and l/m ~tfl, , .  The definitions then 

tell us that ?,~,q ~ ~,~., as required. 

(ii) The argument is the same as in case (i) replacing a0 by a~ and m, n by 

m + l , n + l .  

(iii) Here we see that aq~tao ,  a r ~ t a  I and l/m~t.fl,,+l. Once again the 

definitions give the desired congruences. 

(iv) In this case we must have aq ~_t at. Of  course, if they were congruent to 
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s0 or s ~ modulo t then they would be so congruent modulo every t E T for a 
contradiction. Thus the definitions again give the required result. 

We now carry out a similar analysis for (1.5). We begin with _t = A T  and 

~m,q ~ t  (~. 
(a) ~ O  
(i) As O satisfies (1.5) (and (1.1)) there is a t '  which is the infimum over a 

finite subset of  T such that tim ==-r. ~ and Sq ~ s~ We have the required 
congruence 3'm,q ------.e t~ by definition. 

(ii) As for (i), replacing s0 by s i and tim by tim + 1. 
(b) ~,, = 6 
(i) As e satisfies (1.5) there is a t '  as.above such that sq~-e. Otr~.eot o and 

]~m ~.r #n" Once again, that suffices. 
(ii) and (iii) are the same as (i) modulo alphabetic variations. 
(iv) Again we have a t '  such that Sq ~.t' Sr. AS t ---- t '  and neither SqnOr s ta re  

congruent to a0 or s~ modulo t, then neither are congruent modulo t'. Yet 
again then definitions give the desired congruence modulo t'. 

PROOF OF THEOREM 1.2. We begin with the complete compact usl rep- 

resentation O0 for ~ supplied by Lemma 1.4. As the union of  a nested chain of  
complete compact usl representations for ~ is deafly also a complete compact 
usl representation for ~ ,  we can iterate applications of Lemmas 1.5 and 1.7 to 
close off with a final representation O D O0 which satisfies all of  (1.0)-(1.7) as 
required. 

We will use all of the properties of the representation of ~ in our construc- 
tion of an isomorphic initial segment of  the degrees of constructibility. To see 
that this precise construction will not work for any wider class of  lattices we 
show that properties (1.1)-(1.5) are enough to guarantee that Le is algebraic. 

PROPOSITION 1.9. Any complete lattice with a complete compact usl rep- 
resentation (that is, one satisfying (1.0)-(1.5)) is algebraic. 

PROOF. In fact, each i ~ ~ is the infimum, i, of those j which are of the 

form V{k: a=--~fl} for a and fl such that s=--ifl: This infimum is clearly _-__ i. 
For the other direction, first note that by (1.4) a=--jfl for each such j ,  s and ft. 
If_/~i, there would be, by (1.2), s and fl such that s=--~]3 but  a ~ f l .  T h e j  
corresponding to this pair s,  fl would have to be ~ i by its definition but this 
would contradict (1.1). Thus i = _/. As each of these j is compact  by Lemma 8, 
.~o is algebraic. 
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In Section 4 we will use Proposition 1.9 to show that, regardless of the 
assumptions made on the O,, if our forcing construction produces an initial 
segment of the constructibility degrees which is a lattice then that lattice must 
be algebraic. We will also show that other possible constructions (depending 
on the extent to which they resemble ours or any other known initial segment 
argument) can succeed only if ~ satisfies conditions somewhat weaker than 
being algebraic (semi-continuity or continuity). 

2. The forcing notion, the distinguished reals and their order 

In the next two sections, we assume that ~ is a countable algebraic lattice 
in L. 

In this section, we construct from a sequential algebraic representation o f ~  
the forcing partial ordering P. P will generically add to L distinguished reals 

(hi ] i E ~ ) .  In this section as well, we prove that the _-<c-ordering on the h~ is 
the same as the lattice ordering on ~ .  In the following section, we will prove 
that the degrees of constructibility in a generic extension of L by P are exactly 

the degrees of the hv 

NOTATION. In the following two sections, we will assume that V -- L and 
that the lattice ~ has a sequential algebraic representation O given by 
(~n  I n < t o )  and (O, In < t o ) .  We will reserve the symbols i, j ,  k for 
denoting elements o f ~ ,  and a, fl, y for elements of O. Recall that an element of 
O is a map from ~ to to and that we define equivalence relations on O by a--~ fl 
iffa(i) = fl(i). The properties of the representation O that we need are listed in 
Definition 1.1: zero (1.0), ordering (1.1), non-ordering (1.2), completeness 
(1.4), compactness ( 1.5 ), meet (1.6'), and homogeneity (1.7'). 

REMARK. Most of these properties of O are used to show that the embed- 
ding taking i to the degree of constructibility of h~ preserves the appropriate 
structure o f ~ .  For example, the meet property is used in Lemma 3.4 to show 
that if i ^ j  = k, then any real constructible from both hi and hj is also 
constructible from h k. The homogeneity property guarantees that the structure 
of the forcing conditions permits the fusion arguments which show that this 
control of the degrees of constructibility in the generic extension is as tight as 

possible: i.e., that no extraneous degrees are added. 

NOTATION. <too is the collection of finite sequences from O, ordered by 
extension. We reserve the symbols a, ~, p, zt, to denote elements of <'°O. The 
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concatenation a ^ ( a )  may be unambiguously denoted by a^a.  We say that 
e----~: iff [o[ = [z[ and, for all n < 1o'[, e(n)=--iz(n). 

We will force with subtrees of <°'O to add a generic function g from to to O. 
We will use g to denote both such a function, and the term in the forcing 
language for the generic object. Similarly, we will use r, s, t and h,. to denote 

both terms for reals, and their realizations, hi denotes the specific real defined 
from g whose degree of  constructibility corresponds to the lattice element i, 
given by hi(n) = g(n)(i). If  we need to specify the interpretation of  a term t 
relative to a given generic g, we will write (t)g; the interpretations of  the term hi 
relative to g and g '  may be denoted h~ and h~ respectively. The restriction of  a 

function f o n  to to an integer m will be denoted f r  m. 

REMARK. Occasionally we will speak from the perspective of  the generic 
extension L[g] rather than that of L;  the context should eliminate any 

ambiguity. 

DEFINITION 2.1. A tree is a downward-closed subset T of <°'O such that 

every element of  T has incomparable extensions in T. 

DEFINITION 2.2. A node txE Tsplits in T i f f  cz has at least two immediate 

successors, a^a  and tr^p, in T. 

DEFINITION 2.3. Ln(T), the nth  splitting level of  T, is 

{o E T I o" splits in T and I {z [ z c o and z splits in T) I = n }. 

DEFINmON 2.4. The forcing partial order (P, <)  is defined by: 

P = { T ] T is a tree with the properties (1) - (4)  of Definition 2.7). 

and 

S < T  iff TD_S. 

(S _-__ T means that S is a stronger condition than T; S extends or refines T.) 

DEFINITION 2.5. (The generic reals) Suppose (a is a generic filter on P. We 
define, as usual, 

g =  A ( T [  T i s i n  ~ )  (g is thus a function from to to O), 

and for i E--o' we define 

hi(n) = g(n)(i) (hi is thus a function from to to to). 
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REMARK. As usual, L[g] = L[f~], and T ~  ~ iffg is a branch through T. 

DEFINITION 2.6. Suppose a EL,(T) and a ^ a E  T. We define a-a to be the 

unique extension of a ^a in Ln + ~(T). (If necessary to avoid ambiguity, we write 
0"-0~ T.) 

DEFINITION 2.7. The properties required of  elements of  P are as follows: 

(1) Splitting: If a is in Ln(T) then the immediate successors of  a in T are 

(2) Congruence: Suppose or is in L,(T), and a and fl are in On. Then for all i 

in ~n ,  ifa-~fl then a - a ~ a - f l .  
(This condition says that, for a in L.(T) and i in ~ . ,  if  two immediate 

successors of tr are congruent mod i, then their extensions up to L. + ~(T) must 

respect this congruence. The effect of  this requirement is that, i f g  and g '  are 

two paths through T, g t m = a - ~ ,  and g'  t m = a-r, then hi t m = h '  t m. 

Thus h~ carries less information than g.) 

(3) Uniformity 1: For all n, all nodes on Ln(T) have the same length. 

(4) Uniformity 2: If a and z are both in L,(T) then for all p, a^p E T iff 

T^p~T. 
(These uniformity conditions guarantee that, in the situation described 

above, hi truly carries less information than g; since Tabove a - a  and Tabove 

a - p  are identical, it may well be that g above a - a  and g '  above a - p  are 
identical, in which case h~ -- hl but g ¢: g'.) 

REMARK. In the following definitions and lemmas, we present some 

notation and basic facts that will be useful in manipulating trees. Some lemmas 
which are either easy to prove or completely standard are stated without proof. 

DEFINITION 2.8. T < ,  S ill" T < S and T D__ L,(S). 

REMARK. T =< S means that T is a "thinning out" of  S; T =<, S means that 

T is obtained by thinning out S above L,(S). 

DEFINITION 2.9. A fusion sequenceis a sequence (T, [ n ~o9) from Psuch 

that for all n, 7", + ~ < ,  7",. Its fusion is the tree A{ Tn I n ~ oJ }. 

REMARK. The fusion of a fusion sequence is a condition. 

DEFINITION 2.10. If  oCT, (T)o is the tree {T~TIa~_z or z _ a } .  A 

restriction of  T to a is any condition S contained in (T)o. 
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LEMMA 2.11. For any condition T and node a ~ T, restrictions of  T to cr 
exist. 

PROOF. The tree (T), is not a condition only because it has too much 
splitting; it is too fat to satisfy the splitting property. We can thin it out to a 
condition S, defined inductively on the splitting levels of S: 

Lo(S) = Lo((T)~); 

L,+~(S) = {cr-a r I a and aGO,} .  

DEFINITION 2.12. The condition S given above is the canonical restriction 
of  T to a. 

REMARK. There are many possible restrictions of T to  a (and no least one). 
(T),  is not itself a condition, but we will sometimes speak as though it were, 
writing "(T)o < S" for "S _~ (T),",  and "(T)o I~- ~0" for "every restriction of T 
to a forces go" (equivalently, T I[- "ifg DD_ a, then ~0".) 

DEFINITION 2.13. If  cr E Ln (T) and S =< (T),,  an amalgamation of S into T 
(above L,(T)) is a condition R < ,  Tsuch that (R), < S. In particular, i fS  I[" ~o, 
then R II- " i fg  __. a, then ~o'. 

LEMMA 2.14. For any such T, a, and S, an amalgamation R of S into T 
above L,( T) exists. 

PROOF. Choose any node cr^z EL,(S).  By uniformity of T, for any 7r 

L,(T), if a ^ z ^ p E S  then n ^ z ^ p E T ;  let R be (the downward closure of) 
{n^z^pla^z^p~S and n EL,(T)} .  Clearly R satisfies the uniformity and 
congruence properties; by the choice of  z, because S satisfies the splitting 
property, R does as well. Therefore R is a condition. 

REMARK. Again, there are many possible choices for an amalgamation. 

LEMMA 2.15. For any T, a E L, ( T), and open dense subset D of P, there is a 
condition R <, T such that (R ) , ~ D .  

PROOF. Choose S < (T), in D, and let R be an amalgamation of S into T 
above Ln(T). 

LF.MMA 2.16. For any T, n, and open dense subset D of P, there is an 
R <, Tsuch that for all cr ~ L,(R), (R)o E D. (In particular, R forces g to meet D 
in one of the (R),for each cr ~L,(R) .)  
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PROOF. Apply Lemma 2.15 finitely many times. 

LEMMA 2.17. I f  (Dn [ n ~o~) is a sequence o f  open dense sets and T is a 

condition, then there is an S < Tsuch that for all n and all ~ ~Ln(S) ,  (S)o EDn. 

PROOF. S is the fusion of  a fusion sequence < T~ I n ~ oJ ) in which TO = T 
and T~ +~ is obtained by applying Lemma 16 to T~ and Dn. 

COROLLARY 2.18. P is an Axiom A notion o f  forcing and so forcing with P 
preserves Rj [5]. 

COROLLARY 2.19. Let t be any term for a real in L[g], i .e . , for  a function 

from o~ to oJ. There is an (open) dense set o f  conditions S such that for  all n < co 

and all ~ EL~(S), (S)~ decides the value of t (n) .  

DEI~INITION 2.20. We say that any condition S as in Corollary 2.19 

finitizes the term t. 

REMARK. Every condition finitizes the terms hi. 

DE~INIa'ION 2.21. Ifs  and t are terms for reals in L[g], t is called s-absolute 

iff the realization of  t in L [g] depends only on the realization of s. 

REMARK. If  t is s-absolute, then t is forced to be constructed from s by a 
specific procedure which is fixed in the ground model. One may assume that t 
denotes the/~th real constructed from s, for some fixed ordinal/z. 

LEMMA 2.22. I f  T [[- "t <c s", then there is an S < T and an s-absolute 

term r such that S [[- "t = r". 

PROOf. Tforces that, for some ordinal/~, t is the # th  real constructed from 
s. Choose S to fix a value for/~, and r to denote "the/z th real constructed from 

S". 

DEFINrrIoN 2.23. Suppose T finitizes i. A t-split in T is a pair of  nodes a 

and z on the same level of T such that, for some integers x and y, 

(T)o [~- "t(x) = y", and (T)T I[- "t(x) ÷ y". We then say that a a n d  z t-split on x.  

If  a -----i z, we say this is a t-split mod i. 

REMARK. If  S < T, and two nodes a and ~ of S form a t-split in T, then 

they also form a t-split in S. 

REMARK. A t-split  in T mod  i is a pair of  nodes a and ~ such that (T)¢ and 
(T)T carry the same possibilities for hi, but force different facts about t. The 
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presence of (too many) t-splits mod i forces that t will contain information not 

recoverable from hi, i.e., that t will not be constructible from hi. 

DEFINrno~ 2.24. T ]~-*"t ----<c hi" iff T finitizes t and T has no t-splits 

mod  i. ( [~-* may be read "strongly forces"; Lemma 2.25 justifies this termino- 

logy.) 

LE~MA 2.25. T IF*"t ~c hi" iff there is an hi-absolute term r such that 

T IF "t = r". 

PROOF. First suppose T IF*"t  ~c hi". (Essentially, this means that nodes 
in Twhich are congruent rood i force the same facts about t in T. Thus t can be 
read off from the way in which T finitizes t just using g rood i which is just hi. 
More formally:) 

Since Tfinitizes t, T IF "[ t(x)  = y iff(T)~ IF "t(x) = y",  where a is the initial 
segment o f g  in Lx(T)]' .  Also, a-~-i z iff, for all z < It  I, o(z)(i) = z(z)(i); and 
in this case, a and r cannot form a t-split in T. But if a is an initial segment of 
g, then a(z)(i) = hi(z); i.e., T is congruent to an initial segment o f g  rood i iff, 

for all z < I r I, r(z)(i) = hi(z). But now, T IF "[t(x) -- y iff(T), IF "t(x) = y", 
where z is any node in Lx(T) such that, for all z < x ,  z(z)(i)=hi(z)]". 
This gives a specific real constructed from h,., which is forced by T to 

equal t. 
Conversely, suppose T [[-"t = r ' ,  w h e r e  r is/%.-absolute; and by way of 

contradiction, suppose T has a t-split mod  i, say the pair of  nodes a and z. By 
uniformity, there is a canonical isomorphism between (T)o and (T)~, taking 
a ^p to z ^p; this induces an isomorphism between the portions of  P above (T)o 
and (T)~, so that if g is a generic branch through (T)o, its isomorphic image 
g ' =  U{r^P  I g - a^p} is a generic branch through (T)~. 

Since g and g '  are both branches of T, we have (t) g -- (r) g and (t) r =  (r) r. 
Since a-~i r (and above those initial segments, g = g'), hi = h~, so (r) g = (r) g'. 
But since a and r formed a t-split, (t) g ~ (t) r, a contradiction. 

COROLLARY 2.26. I f  T forces "t <¢ hi", T may be extended to strongly force 
"t <c hi" I f T  [I--*"t <c hi" andS < T, then also S [[--*"t < h~'. 

REMARK. The following lemma completes the tasks of this section. 

L~MMA 2.27. l f  g is P-generic, h~ <c hj iff i < j. 

PROOF. First suppose i is not below j ,  and show that hi is not constructible 
from hi. By Corollary 2.26, if h~ were constructible from hi, there would be a 
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condition T in the generic filter such that T It- * "h~ <c hi". It suffices, by the 
definition of  H"* to show that every condition Thas  an h~-split m o d j .  Choose 
n large enough so that i and j are in ~ , , .  By the non-ordering property of O, 
there are a andfl  in On such that a is congruent toi l  m o d j b u t  not mod  i. Let T 
be any condition, and tr any element of Ln(T); say l al = x. Both a ^ a  and tr ̂ fl 
are in T; if they are initial segments of  generics g and g '  respectively, then 

h i ( x ) = g ( x ) ( i ) = a ( i ) ~ f l ( i ) = g ' ( x ) ( i ) = h ' ( x ) ;  so a ^ a  and tr^fl form an 
h,-split m o d j .  

If i _-<j, to show h~ _-<c hi, it suffices to show that no condition has an h,-split 

m o d j  (so every condition strongly forces "h~ --<c hi"); but this follows from the 

ordering property of O. 

3. Initlality 

In this section we complete the proof, by showing that P forces any real in the 
generic extension to be equiconstructible with one of  the hi. 

REMARK. Our strategy is first to show that, for any real t, there is a least j  
such that t < hj and then to show that for this j ,  hj < t. 

DEF~NrnON 3.1. A strong t-split is a t-split with the properties: 
(a) The split has the form t r -a  ^p and t r -#  ^p for some sequence p. 
(b) The node tr is in Ln+I(T),  and a and fl are in On. 

REMARK. We are about to do some manipulating of  trees using the meet 
and homogeneity properties of  O; these properties say that, if certain objects 
exist in On, other things can be found in On + ~. Clause (b) gives us enough room 
to use these properties. The proof  of  Lemma 3.4 is illustrative. 

LEMMA 3.2. Suppose T finitizes t and  T IF "t is not constructible f r o m  hi". 

Then  T has strong t-splits mod j .  

PROOF. First, by Lemma 2.25, we know that every such T has t-splits 

m o d j .  
Next, we show that every such T has t-splits mod j with property (a). Let tr 

and 3 be a t-split m o d j ,  with common initial segment p ~ L , , ( T ) .  Say 
(T)o 1~-" t (x)=y"  and (T), ] - - " t ( x ) ~ y " .  Since T finitizes t, possibly by 
extending a and 3, we can assume they lie in L,, ÷ n (T), m + n large enough so 
that for every n ELm÷n(T) ,  (T)~ decides the value t (x) .  We can write tr as 
p ^ tr(1) ^ .  • • ^ tr(n), where p ^ . . .  ^ a ( z )  is in Lm + z(T), and 3 similarly. Consider 
3' -- p ^ tr(1) ^ 3(2) ^ . . .  ^ 3(n); 3' E T by uniformity. Either (T)e [~- " t ( x )  = y"  
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(in which case, z and z' form a t-split m o d j  with property (a),) or else 
(T)r, I~- "t(x) ÷ y" (in which case, tr and z' form a t-split m o d j  with common  
initial segment in L m + l (T) ,  and the argument can be repeated with z' in place 
of  z; after at most n repetitions, a t-split with property (a) will be produced.) 

Finally, we show that every such T has strong t-splits m o d j .  Choose 
p E L m ( T ) ,  for m > 0, and let R be the canonical restriction of  T to p. Let tr and 
z be a t-split m o d j  in R,  with property (a) which split on x. Since T finitizes t, 
we may assume, possibly by extending tr and z, that (T)o and (T)r already 
decide t(x), i.e., tr and z form a t-split m o d j  in T, with property (a) (because of  
the canonical choice of  R). We show they also have property (b) in T: Suppose 
their common initial segment is 7~ E L, (R); then cr = r t -a  ^Tt' and z = 7t-p ^Tt' 

for a and fl in O,. But if n EL,(R),  then n EL,+m(T);  thus the pair tr and 
have property (b) in T. 

COROLLARY 

T has a strong 

PROOF. In 
extend a. 

3.3. I f  T II- "t is not constructible from hi", then for any tr in T, 
t-split mod j extending tr. 

the third part of the proof  of the above lemma, choose p to 

LEMMA 3.4. Suppose k = i ^ j ,  T II-"t <~ hi", and T IF "t ~ i~". Then 
r IF "t 

REMARK. That is to say, the (finite) meet structure o f .~  also carries over to 
the degrees. 

PROOF. Suppose not. By extending T if necessary, we may assume that 
T IF-"t is not constructible from hk', T finitizes t, T Ik*"t < ~ ' ,  and 
T [~- * "t -_<¢ hj ". Choose n large enough so that i , j ,  and k are in .Ce,. By possibly 
increasing n and Corollary 3.3, we may choose a strong t-split mod  k with 
common initial segment a in L,(T), say (T)¢-a^p ][-"t(x)=y", and 
(T)o-rp [I- "t(x) ¢ y". Possibly by extending p, we may assume that for every 
7t ~ T on the same level of  this t-split, (T)x decides the value t(x). 

Now by property (b) of the definition of strong t-split, and the meet property 

of  O, there are 7m in O,, m = 0, 1, 2, 3, 4, such that a = ~ o ~ i T l ~ - j T E ~ - i 7 3 ~ j  

74 =~- Since a - a  ^p and a-fl^p split in T o n  x, so do cr-y,~^p and cr-ym+l^p 
for some m; but this means that T has a t-split mod  i or m o d j ,  contradicting 
T [~-* "t <c hi" or T I~-* "t ~ / b  "- 

LEMMA 3.5. Suppose (i(n)lco) is a decreasing sequence (in the ground 
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model L) of  elements of  .~ with infimum i and,for all n, T 1[- "t < 1. ,, Then -~-c t~i(n) • 

T [[- "t <c hi". 

PROOF. Suppose, by way of contradiction, that T I[- "t is not constructible 
from hi". 

For all m,  choose f (m)  large enough so that, for a and fl in Ore, i fa-~i  fl, then 
a=--i~m))fl. This is possible by the compactness property of O. Given a 
condition S, we say the property p(m, S) holds iff, for all tr EL,,(S) and a and 

fl in Or,, if a-----,~,,))# then a-a=--it~m))tr-#. (Note that i f p ( m ,  S) holds and 
n > m + 2, then for R < ,  S, p (m, R) holds as well. So, i fa  fusion sequence has 
the property that for all m, p(m, Tm+2) holds, then for all m, p(m, To,) holds.) 

To obtain our desired contradiction, it suffices to find S < Tsuch that for all 
m, p (m,S )  holds, and for tr~Lm(.S), (S), I[-*"t--<c hi<:~m))". To show this 
suffices, suppose S is such a condition. By Corollary 3.3, S has a strong t-split 
mod  i, say t r -a  ^p and tr-fl^p for a~Lm(S). Since a ~ ; f l ,  by the choice o f f ,  
ol ~--i(f(m))#" But then by p(m, S), tr-a ~i(J~m))a -#. This means that tr - a  ^p and 
a-fl^p form a t-split mod  i(f(n)), which contradicts the assumption that 

(S), [[-* "t <c hio~.))". 
We now build such an S. S will be the fusion of a sequence (Tin [ m < co) 

such that for all m, p(m, Tin+2) holds and, for trELm(Tm), (Tm+Oo I[-*"t <¢ 
h~m))". Clearly this will do. Choose the Tm inductively, assuming for the 
induction hypothesis that in addition, p(m, Tm+ ~) holds for all m. 

Begin by choosing an increasing sequence, (d(m)  [ m < co ), such that for all 
m ,  i ( f ( m ) ) E . ~ q ~ d ( m + t )  and a tree To < Tsuch  that To ][--* "t <c hi~0))". 

Extending T, to T, + t" 
We assume p(n - 1, T,) holds. For a~L, (T , ) ,  there is, by Corollary 2.26, 

an S < (T.) ,  such that S [1"-* "t <c" " h~.)) . We may choose tr ̂  z EL,(S)  and 
extend T, to 

R - [zr^z^p I and a^z^pES} .  

Clearly R _-<. T., and (R)~ _-< S. I f p (n  - 1, T.) holds, then p(n - 1, R) holds 
(because for rt E L. _ t(T. ), zt - a and rc - fl from T. have been extended in exactly 
the same way to get ~r-a and zt -fl in R). Thus, in finitely many steps, we may 
extend T. to R such that p ( n -  1,R) holds, and for each aEL. (R) ,  
(R)~ I[- * "t <c hi~,))". 

Now to extend R to T,+ t, choose any a EL,(R)  and a^z ~Ldt.+ ~)(R). Let 
L,(T,+~)={rt^z ]nEL,(R)};  by the same reasoning that showed that 
p(n - I , R )  held, this guarantees p(n - 1, T,+~). By choice of d(n + 1), 
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i(f(n))E-~d~n+~). Since for p~Ln(T~+I), p ELa~+I)(R), it follows that, if  

a----;~))fl are in Od~ + 1), then p - a R -  ))p-fiR. Thus if we let 

L,+~(T~+t) = {p-a R ]p~L,(T,+~) and a ~ O n } ,  

we will have p(n, T~ + i), as required for the induction hypothesis. Finally, we 
complete the definition of  Tn + 1 by induction on splitting levels by setting 

Lm+t(T~+I) ffi {p-a R I 7t ELm(T,+I) and a~Om} for all m >_- n + I. 

REMARK. This proof  somewhat obscures the real idea here. In fact (guided 

by the fusion sequence we have built) we are building S to strongly force t to be 

constructible from hi by the following procedure: 
TI gives a procedure to recover t from hi(~t0)), i.e. f rom g mod  i(n (0)); but n (0) 

was chosen so that, as far as the first splitting in TI is concerned, to know the 
path taken by g mod i(n(O)), it suffices to know g mod  i. Once we know the 
first splitting, however, we are in some restriction of T2 to a node on LI(T2). 
This restriction gives a procedure to recover t f rom g m o d  i(n(1)); but, as 
before, to know the next splitting mod i(n(1)) it suffices to k n o w g  rood i. Once 

we know this splitting we are in a restriction of T3, and so on. Thus at each 
stage, or each splitting level, to know g to the precision required to decide from 

S the next fact about t, it suffices to know hi. 

COROLLARY 3.6. I f  t is any real in L[g], then there is a leastj such that hj 
constructs t. 

PROOF. Let t be a real in L[g], and X -- {i [ t <c hi}. In L[g], X is closed 
upward and, by Lemma 3.4, closed under finite meets. By Lemma 3.5, X is 
closed under infima of  descending sequences in the ground model  L.  By 
Shoenfield absoluteness, .~  is complete in L [g] and so the meet of Xis  defined. 
We want to show that the meet of Xis  in X, i.e., that Xhas  a least element. Le t j  
be the meet of X. 

By Shoenfield absoluteness again, if i is a compact element of .~ in L,  i 

remains compact in L[g]. Thus J = {i IJ --< i and i is compact} defines the 
same set in L [g] and in L. If  i E J,  by the definition of  compactness, i is above 
some finite meet from X. Then, by the closure properties of  X, i E X. Thus 
X3_J.  

Finally, as &e is algebraic, j is the meet o f J .  I f j  is the meet of  finitely many 
elements from J ,  then by the closure of X under finite meets, j is in X. If  not, 
since by Lemma 1.3, J is closed under finite meets, j can be written in L as the 
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infimum of  a descending sequence from J. By the closure of X under such 

infima, j is in X in this case as well. 

REMARK. Our next, and last, major task is to show that every t is 

equiconstructible with some hi; specifically, that t constructs the least hj which 

constructs t. 

In any setting where we are forcing with trees, the standard proof that s <~ t 

uses a fusion argument to build a condition T which strongly forces "s <c t"; 

i.e., any nodes of  T that carry different information about s also carry different 

information about t. At stage n of  the fusion argument, having chosen Tn, we 

need to guarantee that, for a and z in Ln(Tn) carrying different information 

about s, (Tn + i)~ and (Tn + 1)~ force different facts about t. To do this, we want to 

extend a to two nodes o'(0) and o(1) carrying different information about some 

t(x), extend T to some node T' which also decides t(x) in T (hence which 

disagrees with one of  the a(m)) and then to replace (Tn)o with (Tn)~¢m) and to 

replace (Tn), with (T~),. in the extension T~+ ~. 

This is essentially what we want to do in this setting. However, things aren't 

quite so simple; we have to choose the appropriate extensions of a and T 

carefully in order to retain the congruence and uniformity properties in T~ +,. 

The next lemma isolates the technical result we need in order to do this. 

LEMMA 3.7. Suppose T finitizes t, a E Ln(T) and ao and a~ are in On. Let k 
be the greatest element of ~ such that ao~ka,. (Such a k exists by the 
completeness and zero properties of  O.) I f  there is a strong t-split mod k in T 
above a-  Oto, then there is an S <n + l T such that the pair tr- ao and a-a, form a 
t-split in S. 

PROOF. To determine S, we will choose for each a E On a sequence a(a) 
such that (for some fixed m > n); 

(i) a^a(a) is an extension o fa^a  in Lm(T). 
(ii) For all i E.~q'~ and a and a'~On, ifa-=~a', then o(a)~ia(a'). 
(iii) a^a(ao) and a^a(at) are a t-split in T. 

Then we define S inductively by splitting level: 

L~+t(S) = {~^tr(a) [ z EL~(T) and a~O~}.  

For m'  > n + 1, 

Lm,+,(S) = { z - a r  ] z ELm,(S ) and a~Om,}. 

By construction and clause (i), S satisfies the uniformity properties on con- 
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ditions at level n + 1; clause (ii) guarantees that S satisfies the congruence 
property there; and clause (iii), that a -a0  and tT-am form a t-split in S. That  the 
requirements for being a condition are met at levels above n + 1 is immediate  
from the definition and their being satisfied in T. 

Assume then that there is a strong t-split mod  k in T above tr-a0, say p -fl0 ̂ ~t 
and p -//3 ̂  ~t t-split on x. For some N > n, p ~ Ls(T)  and ,8o and ,83 are in O~v_ ,. 
Possibly by extending 7r, we may assume this split is in Lm(T ) for an m such 
that any restriction of  T to a node in Lm(T) decides the value t(x). 

Before defining a(a) we introduce the following notations: 

For a E  On, p'(a) is the final segment of  a - a  above a. 
~t' is the final segment o f p  above a-ao. 
For ,8 EOs ,  ptfl) is the final segment of  p-,8 above p. 

Now, our strong t-split has the form a^p'(ao)^~t'^p(flo)^Tt and 
t7 ̂ p'(ao) ^Tt' ^P(fl3) ̂ Tt. A typical candidate for tr(a) will be p'(a) ^Tt' ̂ p(fl) ^Tt for 
some ,8 ~ ON. This will guarantee clause (i). 

We now have,80, ,83, a0, al in O~_ i. Since,80----kP3 and k is largest element of  
.2' such that ao=--k a l, we can apply the homogeneity property of  O to obtain`sl 

and `82 in Os and f0, fl, f2 mapping Os_ l into ON such that, for M = 0, 1 or 2, 
each f~, preserves -----i for all i E .~ ,  fM(ao) = tiM, and fM(a i) = PM+ ~. Note that 
the restrictions of T to  nodes tr^p'(ao) ^rt' ^p(flu) ^Tt and tT ̂ p'(a~) ^~' ^P(flM) ^~t 
decide the value t(x). 

Case 1: For some M, restrictions of T to o^p'(ao)^Tt'^p(flu)^x and 
tT^p'(a~) ^lt'^p(fl~)^~t decide t(x) differently, i.e., those two nodes form a 
t-split in T. (This is the easy case.) Let a(a) be p'(a) ^it" ^p(flu) ^~r. Clause (iii) 
is then satisfied. Since all tT(a) and o'(a') are the same except for initial 
segments p'(a) and p'(a'), which are the final segments in T of  a - a  and a - a ' ,  
clause (ii) is immediate. 

Case 2: For all M, restrictions of T to a^p'(ao)^zt'^p(flM)^~t and 
o^p'(al)^Tt'^p(flu)^rt decide t(x) the same way. For some fixed M < 3 ,  
a^p'(ao) ^Tt' ^P(`SM)^it t-splits in T on x with a^p'(ao)^it' ^p(]3M+,)^it, and 

hence also with a ^p'(aO ^Tt' ̂ p(fl~+ i) ̂ Tt. Now let a(a) be p'(a) ^Tt' ̂ p(f~(a)) ^;z. 
In particular, tt(a0) = p'(ao) ^it' ^p(p~) ^~t and a(a  i) -- p ' (a  ~ ^~t' ̂ p ( ~ +  ~ ^~t. 
This guarantees clause (iii). To see that clause (ii) is satisfied: suppose a ~ a', 
and i ~ . ~ n .  By the choice o f f ~ ,  f~(a)~'~fu(a'). Since i~ -~n ,  by the con- 
gruence property of the condition T, p(f~(a))-~p(f~(a')); hence, 
a(a)---, ~(~'). 

This completes the proof. 
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LrMUA 3.8. Suppose T II-"J is the least element of .~ such that t < ~". 
Then T [~- "hi <~ t' .  

PROOF. We may assume T I~- * "t =<c hi". We want to construct S _-< T such 

that whenever two nodes in S carry different information about hj (i.e., are not 

congruent mod j )  then they also carry different information about t (form a 

t-split in S). Thus S wiU strongly force, in the appropriate sense, "hi -<c t". It 

suffices to construct S =<- T such that, for any a E Ln(S) and a not congruent to 

p m o d j  in On, the pair a - a  and a - p  t-split in S on some value x and such that 

every restriction of  S to a node in Ln + ~(S) decides t(x). 
First, we show that this suffices: Assume S has this property. Choose N large 

enough so j ~ ~N. 

Suppose first that o" and z are two nodes of S which are not congruent m o d j  

and that a and ~ have a common initial segment in L~(S). We may assume that 

a ~_p-a and z ~ 7z-p, where [Pl = tTt L, P is on or above L~(S), p----j 7t, but 

p - a  and ~t -fl are not congruent mod j .  (By uniformity p -fl ----j 7t -fl, so p - a  

andp- f l  are not congruent mod j .  By the assumptionj E ~ ,  this means that a 

and fl are not congruent modj . )  Since T [[--*"t <c hi" and p-fl---~ 7t-fl, then 
p-fl and g- f l  are not a t-split. But by assumption on S, p -a  andp  -fl t-split in 

S on some value x which is also decided by (S)x-p (which necessarily agrees 

with (S)p-p). Thus p - a  and 7r -fl (and hence their extensions a and 3) t-split in 
S o n x .  

Now we know that if a and T are not congruent m o d j  and have a common 

initial segment in L~(S), then they form a t-split in S. Thus S forces t to 

construct hj by the following procedure (with parameter ~t, the finite initial 

segment of g in Ls(S)): To find any given hi(y), choose a D_ 7t in S such that 

I o I > Y, and such that whenever (S)o forces a value for some t(x), that value 

agrees with the actual one. Then o --=j g t I a I, for if  not, a and g r I a I would 

t-split on some value x, contradicting the choice of a. So hi(y) = g(y)(j) = 
a(y)(j). 

Second, we construct such an S. S will be the fusion of  a sequence 

( Tn [ n < co ) with To = T. To guarantee that S has the correct properties, we 

will choose Tn+~--<n+~ T~ such that for aELn(Tn) and a0 and a~ in On not 

congruent mod j ,  a ^ a0 and a ^ a I form a t-split in Tn + ~ on some x such that any 

restriction of  Tn + ~ to a node on L~ + l(Tn + 1) decides t(x). To do this, extend Tn 

to T n +1 in finitely many stages, at each stage taking care of  a given a, a0, and a l ,  

using Lemmas 3.7 and 2.15. (Lemma 3.7 is applicable because, if a0 and a~ are 

not congruent mod j ,  then we can let k be the greatest element o f -~  such that 
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Or0 ~k a I (such a k exists by the zero and completeness properties ofO). k is then 
not >_-j, so T I~- "t is not constructible from hk"; and so by Corollary 3.3, there 
is a strong t-split mod k above every node, in particular tr-o~0, in any extension 
of T). 

This completes the proof. 

4. Conclusion 

THEOREM 4.1. Suppose V = L, and .~ is a countable algebraic lattice. 
Then there is a partial order P such that I~'e "The degree of  constructibifity of  
reals are isomorphic to .~ ' .  

PROOF. By Theorem 1.2, ~ has a sequential algebraic representation. Let 
P be the partial order of Definition 2.4. By Lemma 2.27, I]-p "The degrees of 
constructibility of the reals hi are isomorphic to ~ ' .  By Corollary 3.6 and 
Lemma 3.8, I["e "Every real is of the same degree as some h~". 

COROLLARY 4.2. In a sufficiently rich model of  set theory (e.g. one in which 
(to2) t is countable), every constructible algebraic lattice which is countable in L 
is isomorphic to an initial segment of  degrees of  constructibility of reals. 

COROLLARY 4.3. By relativizing the above result we see that in every 
sufficiently rich model of  set theory (e.g. one in which (to~)Lt,] is countable for 
every real r), every countable algebraic lattice is isomorphic to a segment of the 
degrees of  constructibility of reals. 

Our basic result shows that a countable lattice in L can be isomorphic to an 
initial segment of degres if it is algebraic. An algebraic lattice is by definition 
complete. On the other hand Lubarsky's result [ 15] shows that completeness is 
a necessary restriction, This leaves an obvious gap. The ideal theorem in this 
setting would completely characterize those countable upper semi=lattices in L 
which can be initial segments of the degrees. 

We close with some examples that show that one cannot get all complete 
constructibly countable lattices as initial segments of the constructibility 
degrees by using a forcing notion like the ones used here or in the setting of the 
Turing degrees. 

EXAMPLE 4.5. Let ~ be the lattice consisting of the elements a. for 
n Eto, 0, l, and b. 0 and 1 are, of course, the least and greatest elements of 
respectively. The other order relations of ~ are just that a. + i < a. for n E to. 



174 M. GROSZEK AND R. A. SHORE Isr. J. Math. 

The join and meet operations in ~¢ are determined by requiring that b v an -- 1 

and b A an = 0 for every n E to. 
Suppose we try to realize ~¢ as an initial segment of the constructibility 

degrees by using any forcing notion P such that we can decode the representa- 

tive hi of  the degree corresponding to i E ~ from some type of representation 

of  ~¢ in a way that respects the order and join properties of the representation. 

In particular suppose that, uniformly in x, y, z and m, we can read offthe value 

ofhx(m) from that of  by(m) for each x _-__y in ~ and from those of hz(m) and 

hw(m) for each z and w in ~ such that z v w = x. Consider the realfgiven by 

f(n) = ha,(n). It is clear from our assumptions on the relation between the 

t;epresentation of ~ and its realization in the forcing extension that f is 

constructible from ha. for every n. Thus f m u s t  be constructible. On the other 

hand, we can, by assumption, compute g(n)= h~(n) from ha,(n)= f(n) and 

hb(n). Thus we would have g constructible i n f a n d  hb and so in hb alone for a 

contradiction. 

The crucial property of bt in this argument is semi (or join) continuity. 

DEFINITION 4.6. A lattice .~ is semi-continuous, or join continuous, if for 

every x ~  and every downward directed S c_ La, x vAS --A{x vs  [sES}. 

It is easy to see that any failure of semi-continuity in a countable complete 

lattice provides an example like the one above. One simply replaces the an by 

a downward cofinal sequence in S, 0 by AS, b by x v A S  and 1 by 
A{x v s l s  ~ S }  > x vAS. It is also clear that the argument will work in a 

somewhat more general situation as far as the forcing notion is concerned. The 

dependencies embodied in the ordering and join properties of  our represen- 
tations can be much more general. As long as the reductions depend pointwise 

on only constructibly much information, albeit in a uniform way, the same 

argument will work. It thus seems quite unlikely that one could realize 

complete constructible lattices which are not semi-continuous as initial seg- 

ments of the degrees of constructibility by any forcing argument like the 

known tree notions of  forcing. 

If  one restricts attention to forcing notions tied even more closely to our 

representations and methods of proof then we can rule out an even wider class 

of  lattices. 

DEFINITION 4.7. Let .~ be a complete lattice. We say that y is way above x, 
y >> x ,  if  ^ I ___ x implies that there is a finite F c_ I such that AF ~ y .  Thus  x is 
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compact iff x ,> x. ~ is continuous if every element is the infimum of the 

elements way above it. 

This definition, which is, as our wont, the dual of the one in the basic source 
on continuous lattices [7], shows their close connection with algebraic lattices. 
Indeed the way above relation is often called relative compactness. To extend 
our counterexamples, however, we need a characterization of continuous 
lattices in terms of a distributivity law (like that defining semi-continuity) 
whose dual form can be found in Theorem 2.3 of Chapter II of [7]. 

PROPOSITION 4.8. A complete lattice .~ is continuous iff for every family 
{lm: m EM}  of  downward directed subsets of  ~ the following distributivity 
property holds: 

(,) 
V{AI m: m E M }  

= A {V {,/[m) : m E M} : f  is a choice function for the family Im}. 

Suppose now that .~ is a complete but not continuous countable lattice. By 
the countability of ~ we may assume in the failure of  the condition (,) of 
Proposition 4.8 given by non-continuity that M is co, each Im consists of a 
decreasing sequence of elements i,,., with infimum/-m and that the infimum 
over all choice functions there can be restricted to one over a countable setf~ of 
such functions. As the only posible way (,) can fail is for the right-hand side to 
be strictly larger than the left, we can also assume that the f~ (m) are decreasing 
as functions of n. For notational convenience we set i =Vim, k , - -  
V{ f~(m) : m ~ M }  and k = Ak.. 

Next suppose that we have a forcing extension L[g] given by an argument 
like the one presented above in which the degrees of constructibility are 
isomorphic to .~' with the isomorphism given by i ~ hi. We wish to show for 
our contradiction that h_k is constructible in hi. Now for each n E co, hk_(n) can 
by the ordering property of our assumed representation be read offfrom hk, (n). 
By completeness this can be reacl off from the entire sequence (hi.~m~(n) : 

m ~ co). On the other hand as the f~(m) are decreasing in n, the sequence 
(hi,~m)(n) : n ~co) is constructible in im,, for every n. It is therefore construct- 

ible in h_~. Assuming that a reasonable proof that the map sending i E . ~  to the 

degree of hi is an isomorphism supplies us with a reasonable amount of 
uniformity, we could expect to be able to construct this sequence uniformly in 

h~ and so the sequence over m of such sequences would be constructible from 
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h.~. This double sequence is, by the remarks above, sufficient to construct h_k for 
our desired contradiction. 

Finally we would like to show that, if one forces with trees defined from a 
representation exactly as we have done here to produce a generic extension in 
which the degrees of constructibility are isomorphic to the lattice of equiva- 
lence relations used to define the forcing relation, then the lattice is in fact 
algebraic. To be precise we assume that we have a nested sequence of sets On of 
maps from a given lattice ~ into to with equivalence relations i defined on 
them by a--,,8 iff a ( i ) = p ( i )  for i in ~ .  Let P be the forcing notion defined 
from O = I, JOn as in Definition 2.7 and let g be P-generic over L. We claim 
that if the degrees of constructibility in L [g] are isomorphic to ~ via the map 

sending i E .~  to the degree of hi (where hi(m) = gin(i)), then .~ is algebraic. By 
Proposition 1.9 and the results of[ 15], it suffices to verify that O has properties 

(1.0)-(1.5). 
We begin by noting that the entire development of Section 2 up to the last 

lemma (2.27) does not depend on any special properties of O. In this light the 
arguments for Lemma 2.27 show that hi <c hj iff there are no pairs a, ,8 CO 
such that a----fl/but ot~ip. Similarly, if there were a~0 ] / i n  O then h0 would 
not be constructible. Thus O must satisfy (1.0)-(1.2). Next consider a possible 
counterexample I, a and ,8 to (1.4) (which implies (1.3)). Let i = VI. Another 
diagonalization argument using Corollary 2.26 and this counterexample to 
(1.4) would show that ~{hj  : j  E l}  is not constructible from hi for our next 
contradiction. Finally, we consider a possible counterexample, I, a and p to 
(1.5). We can assume without loss of generality that I consists of a descending 
sequence in with infimum i. Consider the real h defined by h(n) = h~,(n). As in 
previous arguments it is clear that h is constructible in every hi, since we 
already know that O satisfies the ordering property. We wish to show for our 
final contradiction that h is not constructible from hi. Once again we suppose it 
is and apply Lemma 2.26 and a diagonal argument. We have a tree Tsuch that 
T I}-*"h <-~ h~" and indeed by Lemma 2.25 an absolute term g(h,) such that 
T I I -*"h = u(hi )" .  Let cr be a node in Tat  a level n large enough so that our 
counterexamples a and p belong to O,. As a - - iP  we can choose a p such that 
(T),-,^p and (T)o-p^p force the same value forg(hi)(I a I). On the other hand, as 
a ~i,,0 for every n (T)o-, ̂ p and (T)o-pAp force different values for h ( I a I ) for our 

desired contradiction. 

It thus seems unlikely that current techniques can close the gap between our 
positive results and the negative ones of [ 15] by showing that any wider classes 
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of lattices can be isomorphic to initial segments of the degrees of  constructibi- 
lity. One must look either to improvements in the negative direction or 
entirely new techniques for controlling initial segments of  constructibility. 
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